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Aging kinetics of porous media due to freezing-thawing cycles
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Abstract. The two-dimensional Ausloos et al. model of fluid invasion, freezing and thawing in a porous
medium is elaborated upon and investigated in order to take into account the pore volume redistribution
and conservation during freezing. The results are qualitatively different from previous work, since the
damaged pore sizes are found to be much less than the possible maximum value and is reached after a
large number of invasion-freezing-thawing cycles, e.g. the material is “slowly damaged”. The pore size
distribution is thus found in better agreement with expected practical findings. The successive invasion
percolation clusters are still found to be self-avoiding with aging. The cluster size decreases with a power law
as a function of invasion-frost-thaw iterations. The aging kinetics is also discussed through the normalized
totally invaded pore volume.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 81.05.Rm
Porous materials; granular materials – 81.40.Np Fatigue, corrosion fatigue, embrittlement, cracking,
fracture and failure

1 Introduction

Water freezing in a porous material induces usually irre-
versible damage like fractures [1]. The internal pore struc-
ture is strongly affected by the stress field resulting from
dilatation of the fluid under freezing [2]. The pore shape,
sizes, volume distribution, connectivity, a.s.o. are many
relevant technological parameters. Experimental and theo-
retical results are much lacking. The need for a more mod-
ern statistical physics framework and thinking approach is
obvious [3,4]. While this phenomenon has been well stud-
ied through e.g. the so-called invasion percolation [5] and
epidemic [6–8] models, the destructive effect of fluid freez-
ing in the material has been less studied except through
the recent model of Ausloos et al. [9,10].

Ausloos et al. considered a fluid invasion-frost-thaw
cycle in a model porous material, basically assuming that
the water volume [11] increases under freezing and mod-
ifies the elementary pore sizes. The distribution of pore
sizes was seen to evolve with cycles toward the state in
which all pores have the maximum size. The rule which
governs the damage was such that the material was seen
to be “rapidly damaged”. A more moderate destruction
process is suggested here by considering some volume con-
straint. A simple rule is thus defined in Section 2, taking
into account the volume of each nearest neighboring pore.
The volume of the freezing pore and its nearest neghbors
is redistributed between them during freezing. Numerical
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investigations are reported in Section 3. The geometry of
aged invasion clusters is illustrated as a function of time.
Numerical results are presented and discussed, with re-
spect to the pore size and number of filled pores distribu-
tion as a function of cycling time. I stress that the volume
of the pore rather than their number is here the main
concern. The kinetics of the invasion is also investigated.
A discussion of open questions and some conclusion are
drawn in Section 4.

2 Model

The model of reference [9,10] is used in order to serve as
a basis for further developments under the more realistic
constraint hereby introduced. A two-dimensional L × L
square lattice represents the porous material and periodic
boundary conditions are imposed. Each cell of the square
lattice represents a pore. Each pore is connected with its
four nearest neighbors. The starting size distribution is
assumed to be flat and extending between zero and one. A
random number si,j is assigned to each pore with position
(i, j). This number si,j represents some measure of the
pore size. The bottom of the lattice is then invaded by
the fluid. Assuming that capilarity forces control the fluid
invasion, the smallest pore in contact with the bottom
layer is invaded first and the invasion follows such that at
each time step, all empty pores in contact with the invaded
pores are searched for and the pore having the minimum
size is selected for invasion. The above selection-invasion
rule is repeated until the fluid cluster reaches the top of
the lattice.
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After invasion up to percolation, the fluid is assumed
to freeze. The freezing pores are selected among the in-
vaded pores going from left to right and from bottom to
top layer. In order to simulate some damage due to freez-
ing, the size of each invaded pore is assumed to increase
according to the rule:

s+
i,j = si,j + ε

si,j∑
si,j

(1)

where
∑
si,j = si−1,j+si+1,j+si,j−1 +si,j+1 is taken over

the four nearest neighbors of the freezing pore si,j and ε is
a random number taken from a uniform distribution be-
tween zero and one. The size of each of the four neighbors
decreases according to the rule (written for site si−1,j as
an example):

s+
i−1,j = si−1,j

(
1− ε si,j

(
∑
si,j)

2

)
. (2)

According to equation (1) s+
i,j will always be greater than

si,j . The maximum pore size of the frozen pores is also
constrained to be always less than one, i.e. s+

i,j ∈ [si,j , 1].
This requirement leads to the following restriction for ε:

∑
si,j ≥ ε

si,j
1− si,j

· (3)

In doing so the total pore volume is conserved. The
invasion-freezing-thawing process is repeated a large num-
ber n of times. The parameter n can be associated with a
time scale. Iterations up to n = 100 have been simulated.
I have investigated L×L lattices with L varying from 100
to 500. The following data results from a compendium
of several cases. The semi-quantitative aspects have been
found to be stable with respect to changes in numerical
parameters.

Clusters of damaged porous material after invasion and
thawing for various time steps are studied. It is clear that
the successive invasion percolating clusters seem to follow
the rule found in references [9,10], i.e. they are quasi self-
avoiding, and thinning as n increases. A set of examples
is shown in Figure 1 at large time steps of evolution.

3 Evolution of the porous material

The number of invaded/filled pores Nfill(n) as a function
of time step n is shown in Figure 2 for n up to 100. It re-
sults from an averaging over 15 simulations. Starting from
a flat size distribution between zero and one, the distri-
bution Nfill(s) changes as n increases (Fig. 3). In contrast
to the papers of Ausloos et al., in which the shape of the
distribution Nfill(s) piles up into a maximum for the max-
imum size s = 1 after 12 iteration cycles, the distribution
is here evolving toward a maximum size much lower than
unity. Also the distribution increases for small sizes and

presents a wide dip between 0.2 and 0.4. This behavior
looks like that found in real situations where (i) classes of
small pores do not disappear since many small pores are
supposedly appearing when a large one breaks, and (ii)
classes of large pores are unaffected (since they are not
invaded) for large n values. Notice that the shape of the
curve seems not to change qualitatively between n = 20
and n = 100.

It is interesting to see how the size distribution evolves
after a few damages. The size distribution Vini(s) of avail-
able pore volume before the n th invasion is shown in Fig-
ure 4. Notice that most of the available volume piles up
at the size where Nfill(s) is maximum. There is a slight
evolution with the pore size as some stable region appears
for n = 20 till 100.

It is of capital interest to understand the cluster size
aging. In order to do so the sum of filled volumes nor-
malized to the total initial volume after a given cycle has
been measured as a function of time n and as a function of
the size s distribution. The former is shown in Figure 5. It
appears that the sum of filled pores is first linearly decreas-
ing, but then saturates at large n. Moreover from Figure 6,
it appears that the integrated invaded/filled volume is de-
creasing with the number of iteration steps. Larger and
larger pores can be invaded with increasing n.

4 Discussion and conclusion

The percolation cluster evolution of the percolation clus-
ter size S as a function of n is found to decrease as a
power law

S ∼ n−δ. (4)

For 200× 200 lattices the exponent δ = 0.25± 0.04 (the
inset of Fig. 2) in contrast to the case of reference [10]
where it is 0.4. The value depends on the lattice size L in-
creasing logarithmically with L. It has not been searched
for whether the model leads to a fractal or a multifractal
case. The evolution of the fractal dimension of percolating
clusters is usually very slow and is quite close to a loga-
rithmic decrease. Such a slow power law is a characteristic
of aging and high order correlation in phase transitions.

In summary, I have extended a very simple model of
porous material degradation via fluid invasion, frost and
thaw cycles toward a more realistic case than previously,
i.e. there is some fluid volume conservation during freez-
ing. The fluid transport is based on the invasion percola-
tion model.

The porous material is found to be less rapidly dam-
aged than in Ausloos et al. papers. The form of the pore
age distribution is also quite different. However, the inves-
tigations of the cluster geometry have shown that there is
still a slow evolution after several invasion-freeze-thaw cy-
cles in agreement with experimental works.

I gratefully thank M. Ausloos for pointing out different aspects
of this study and for instructive discussions. Dr. A. Erzan is
thanked for critical reading as well.
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Fig. 1. Snapshots of the evolution of the percolation cluster as a function of the invasion-frost iteration time n at various n.
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Fig. 2. The number distribution Nfill(n) of filled pores for dif-
ferent iterations n up to 100. Inset: Log-log plot of the number
distribution Nfill(n) of invaded pores as a function of n, less
than 100, thereby giving the exponent δ = 0.25.
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Fig. 3. The size distribution of Nfill(s) filled pores after dif-
ferent iterations n.
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Fig. 4. Normalized distribution of the sum of initially available
pore volumes sumVini(s) in the material as a function of size s
at different n times.
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Fig. 5. Distribution of normalized total volume of filled pores.
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Fig. 6. Distribution of normalized sum of filled volumes as a
function of pore size.
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